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Abstract—The possibility of employing restricted Boltzmann
machine (RBM) for collaborative filtering has been known for
about a decade. However, there has been hardly any work on
this topic since 2007. This work revisits the application of RBM
in recommender systems. RBM based collaborative filtering only
used the rating information; this is an unsupervised architecture.
This work adds supervision by exploiting user demographic
information and item metadata. A network is learned from the
representation layer to the labels (metadata). The proposed label
consistent RBM formulation improves significantly on the existing
RBM based approach and yield results at par with the state-of-
the-art latent factor based models.

Index Terms—Collaborative Filtering, Recommender Systems,
Restricted Boltzmann Machine, Supervised Learning

I. INTRODUCTION

With the worldwide boom of E-Commerce (business-to-
client) research in recommender systems has become one of
the top priorities both for academia and the industry [1], [2].
Recommender systems are beneficial for both, the business,
and the client. Unlike a physical marketplace, online portals
have virtually an inexhaustible collection of items. It is a huge
task for the user to sift through all the options and buy/rent
the one he/she is satisfied with. Thus, the recommender
systems assist the buyer/client with tailored suggestions. For
the E-Commerce portal, without proper recommendations the
user does not purchase items; hence the portal looses on
business opportunity and thereby loses prospective revenue.
The initial days of recommender systems saw the application
of content based filtering to recommender systems [3]. Content
based filtering was a well-established approach in information
retrieval this was in the early 2000s. However, it never
became popular; several reasons are briefly mentioned in [4].
Mainly owing to the requirement of user intervention in the
definition of content; i.e. one needed to find out the exact
attributes for matches between user and item. For example,
for books the factors might be the author, genre, publisher;
for music, they might be the singer, genre; for movie, they
can be anything ranging from the actors to the director to
the production house to the genre. One did not know if
the expert defined list had already captured all the possible
variabilities in the chosen attributes. If the list of attributes is
too small, important factors would be missing; if the list is too
large one might end up capturing noise in the data. During

the same time (the early 2000s) more abstract yet powerful
techniques based on latent factor modeling and representa-
tion learning started gaining momentum. Instead of explicitly
designing the attributes, latent factor model makes an abstract
assumption. It assumes that the users choice of items is guided
by several latent factors. Instead of designing these factors
(as in content based filtering), they were learned from the
data. Eventually, matrix factorization [5], [6] became the most
popular technique for latent factor model especially after the
announcement of the famed Netflix competition [7]. In the late
90s and early 2000s neighborhood based approaches gained
popularity in collaborative filtering. They were interpolation
based techniques. In the user-based approach [8], similar users
were selected to constitute the neighbourhood, and the ratings
of these users were used to impute the missing values. The
same could be done from an item perspective [9]. These
approaches were simple and easy to interpret. But they were
heuristic, the interpolation weights were defined rather arbi-
trarily. The neighborhood based method yielded significantly
lower accuracy (at least on the benchmark databases) than
the more powerful albeit abstract latent factor models. Even
though the matrix factorization technique was the popular
choice for latent factor based collaborative filtering, a seminal
work [10] showed the possibility of using another representa-
tion learning/latent factor approach for collaborative filtering;
it was the restricted Boltzmann machine (RBM). There is
hardly any work on RBM based collaborative filtering since
the publication of [10]. The basic RBM formulation used
in [10] is an unsupervised one; it was only based on the
users rating on the items. However, in a real system, users
and items metadata is always available. User demographic
information such as age, occupation, gender etc. is collected
as a part of the sign-up process. The item information is also
collected during its registration. Prior RBM based formulation
could not make use of such auxiliary formation. In this
work, we propose to improve upon [10] (in terms of rating
prediction accuracy) by exploiting the user demographics and
item metadata. In recent times (last few years), researchers
have started exploring the possibility of using another powerful
representation learning technique for collaborative filtering,
stacked autoencoder. Both stacked autoencoders and deep
belief network (built from layers of RBM) are used to train
deep neural networks. Almost all studies in autoencoder based
collaborative filtering are minor variations of each other. The
basic autoencoder formulation is directly used in [11]–[13].978-1-5386-2241-4/17/$31.00 © 2017 IEEE



In [14] baseline prediction is used along with the ratings in
the autoencoder framework; the baseline values are simply
appended with the available ratings so that the autoencoder
learns to reconstruct both the ratings and the baseline values.
A combination of marginalized denoising autoencoder and
probabilistic matrix factorization is used in [15] for rating pre-
diction. All representation learning approaches are inherently
nonconvex. Therefore, the associated theoretical problems are
ever present. There is an elegant convex solution to the matrix
factorization approach for collaborative filtering; this is called
matrix completion [16], [17]. It is a convex variant which
directly solves for the missing ratings instead of going through
the intermediate steps of determining the latent factors for
the users and the items. However, this is unrelated to the
representation learning/latent factor model based approaches
we will not discuss it in detail. The rest of the paper will be
organized into several sections. Background on collaborative
filtering will be discussed in the next section. The proposed
formulation will be detailed in section 3. The experimental
results will be shown in section 4. Conclusions of this work
and future directions will be discussed in section 5.

II. BACKGROUND

A. Neighborhood Models

Even though neighborhood/memory based models are not
the focus of this work, we discuss it nevertheless for the
sake of completion. Collaborative filtering can be thought of
as a matrix completion problem. We assume that the users
are the rows and the items along the columns. Each user
has rated a few items. Based on such parsimonious ratings,
recommender systems need to predict the missing ratings.
Once it has predicted the ratings, it recommends items to
users with high valued ratings. Neighborhood based approach
follows a simple interpolation based formulation. For an active
user, it predicts the missing ratings. First, it finds users similar
to the active user (neighborhood) by computing some kind of
similarity (cosine, inverse distance etc.). Next, it interpolates
the active users missing ratings as a linear combination of
the ratings from the neighborhood. The linear interpolation
weights are heuristically fixed; usually, they are the normalized
similarity weights computed in the first step. Such a technique
is called the user-based approach [8]. One can perform exactly
the same steps from an items perspective, leading to the item
based approach [9]. There are combined user and item based
techniques [18] as well. Such neighborhood based models are
simple to understand and implement. The results are easy to
analyze. However, they are heuristic and do not yield very
good results.

B. Matrix Factorization

The latent factor model assumes that the users choice in
items is determined by a handful of factors. For example,
in content based filtering, these factors are hand-picked; for
books, they might be author, publisher, and genre and for
TV shows they might be star cast and genre. However latent
factor models do not try to select these factors, rather they

learn the abstract hidden factors from the data. Say a users
latent factor be represented as a vector ui and the items latent
factor be represented as vj . The user will like the item and
provide a high rating if the corresponding latent factors match.
This is captured as an inner product between the two vectors.
Therefore, the rating of the ith user on the jth item is modeled
as:

ri,j = uivj ,∀i, j (1)

For the entire rating matrix, i.e. for M users and N items,
the latent factor model is expressed as:

R = UV where U = [u+1|. . . |uM ] V T = [v1|. . . | vN ] (2)

In collaborative filtering, the full rating matrix is not
available. A partially sampled version (the items for which
users have provided ratings) are only available. The objective
is to predict the missing values so that recommendations
can be made based on those. The rating acquisition can be
mathematically expressed as:

Y = M �R = M � (UV ) (3)

Here M is the binary mask; it has one where the ratings
are available and zeroes where they are missing. The symbol
� shows binary multiplication.

This (3) is a highly-under-determined problem. Usually, less
than 5% of the matrix is filled. Therefore, correctly predicting
the missing ratings is a challenging problem. However, the
number of latent factors are usually small, for books it may
be just two or three, for movies it can be as large as 40; but
still, the number of factors are much smaller than the rows
or columns of the matrix. Hence the rating matrix will be
a low-rank matrix. Therefore, the number of parameters to
be learned (elements in U and V ) are usually much smaller
than the dimensionality of the matrix. Intuitively speaking, this
gives some hope for solving the under-determined system (3);
as long as the pieces of information (ratings in this case) is
larger than the number of parameters to be learned, we can
hope to be able to estimate them. The user and item latent
factor matrices are recovered by solving the standard matrix
factorization problem

min
U,V

∥∥Y −M � (UV )
∥∥2
F

+ λ(‖U‖2F +‖V ‖2F ) (4)

The Tikhonov type penalties prevent overfitting. There can
be various ways to solve the factorization problem (4). It can
be as simple as stochastic gradient descent and alternating least
squares to as complex as probabilistic matrix factorization.
Authors in [19] argued that even though users latent factors
can be dense since it expected that human beings have a certain
degree of affinity towards all factors; an item cannot possess
all the latent factors simultaneously. Hence, it is likely that
they would be sparse. Following this argument, a sparsity
promoting l1-norm penalty on V has been proposed in the
aforesaid study.
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Fig. 1. Restricted Boltzman machine

min
U,V

∥∥Y −M � (UV )
∥∥2
F

+ λ(‖U‖2F +‖V ‖1) (5)

The problems (4 and 5) are bi-linear, hence non-convex.
There is no guarantee that they will converge to the optimum.
Matrix completion is an elegant formulation that directly
solves for the ratings and not the user and the item latent
factors. It recovers the rating matrix directly by searching for
a low-rank solution. However, minimizing the rank (number
of singular values) is a NP-hard problem hence it’s closest
convex proxy the nuclear norm (sum of singular values) is
used instead [20], [21]. The formulation for matrix completion
is,

min
R
‖Y −M �R‖2F + λ(‖R‖N N) (6)

This is a convex formulation which can be solved by
semidefinite programming. Many faster algorithms also ex-
ist. As mentioned earlier, collaborative filtering is a highly
under determined problem. So far, we only described basic
techniques which required ratings only. In such a scenario,
it is likely that using secondary information may improve
the results. In practice metadata regarding the user is eas-
ily available; demographic information of the users is also
available to the portal from the registration / sign-up process.
Several studies [22], [23] have used this auxiliary information
to boost the accuracy of a recommender system. Others have
combined information from neighborhood based models with
matrix factorization. In [24] the similarity between individuals
was used as a graph regularization in the matrix factorization
framework.

C. Restricted Boltzmann Machine

The restricted Boltzmann machine has been proposed in
[10] to address the collaborative filtering problem. It is a two-
layered (input and representation) undirected graphical model
(as shown in Figure 1).

A simple RBM has a visible layer V and hidden layer
h. Edges connecting these two layers are undirected and the
whole network is a bipartite graph. The visible layer V is
K ×m matrix with V k

i = 1, if a user rating for movie i is k.
Hidden layer h is a 1 × F vector. Joint distribution between
hidden layer h and visible layer V takes the form:

p(V, h) ∝ e−E(V,h) (7)

where E(V, h) = −hTWV −aTV −bThW with parameters
θ = (W,a, b, ). Equation 8 captures predictive information
about the input vector. P (h|V ) has a similar form.

p(V k
i = 1|h) =

exp(V k
i +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(V
l
i +

∑F
j=1 hjW

l
ij)

(8)

p(hj = 1|V ) = σ(bj +

m∑
i=1

K∑
k=1

V k
i W

k
ij) (9)

where σ(x) is a logistic function, WK
ij is weight parameter

between hidden unit(feature) j and rating k of movie i, bki is
the bias of rating k for movie i, bj is the bias of feature j.

The marginal distribution over the visible ratings V is:

p(V ) =
∑ exp(−E(V, h))∑

V ′h′ exp(−E(V ′, h′))
(10)

Here E(V, h) is energy function given by Equation 7.
To update parameters gradient ascent is required in the log-

likelihood, this can be obtained from equation 10.

∆W k
ij = µ

δlogp(V )

δW k
ij

= µ(< V k
i hj >data − < V k

i hj >model)

(11)
where µ is the learning rate. The expectation < V k

i hj >data

defines the frequency with which movie rating k and feature
j are on together when the features are being driven by the
observed user-rating data from the training set using Equation
10, and < . >model is an expectation with respect to the
distribution defined by model. The expectation < . >model

cannot be computed analytically in less than exponential time.
Contrastive Divergence (CD) [24] is used to approximate
computation of gradient of objective function.

∆W k
ij = µ(< V k

i hk >data − < V k
i hk >T ) (12)

The expectation < . >data represents a distribution of
samples from running the Gibbs sampler, initialized at the
data, for T full steps.

Given the observed ratings R, we can predict a rating for
a new query movie m in time linear in the number of hidden
units:

p(V k
m = 1|R) ∝

∑
h1...hp

exp(−E(V k
m, R, h))

∝ Γk
mΠF

j=1

∑
hj∈{0,1}

exp(
∑
il

V l
i hjW

l
ij + V k

mhjW
k
mj + bjhj)

= Γk
mΓF

j=1(1 + exp(
∑
il

V l
iW

l
ij + V k

mW
k
mj + bj)) (13)

where Γk
m = exp(V k

mb
k
m).

Once the unnormalized scores are obtained, pick the rating
with the maximum score as the prediction, or perform normal-
ization over K values to get probabilities p(Vm = k|R) and
take the expectation E[Vm] as the prediction.



Fig. 2. Movie(genre) feature vector

III. PROPOSED APPROACH

We will first discuss prior studies in label consistency
penalties in latent factor model. This was introduced by one
of the authors in prior studies [25]. In the next sub-section,
we will describe our proposed formulation.

A. Label Consistent Latent Factor Model

The basic formulation for the latent factor model is as
follows,

Y = M �R = M � (UV ) (14)

The symbols have their usual meaning. In the label consis-
tent formulation [25]. The user latent factors are mapped to
demographic information encoded as binarized labels and the
item metadata is linearly mapped to their respective binarized
metadata information. Formation of the label information from
metadata is explained with examples.

Let us take the example of movie recommendation. There
are many features for the movies available movie id, movie
title, release date, video release date, IMDb URL, Genre
(Action, Adventure, Animation, Childrens, Comedy, Crime,
Documentary, Drama, Fantasy, Film-Noir, Horror, Musical,
Mystery, Romance, Sci- Fi, Thriller, War, Western). All except
the genre information is irrelevant for choosing a movie. We
have considered only the genre information here.

First, we will describe how the movie features have been-
generated. We generate a binary vector from the genre, the
vector contains a 1 if the movie belongs to that genre or 0
otherwise. The vector is shown in Figure 2.

Say a movie like Shawshank Redemption is tagged as crime
and drama in IMDB. The corresponding feature vector will be
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0]T; It has 1s corresponding
to crime and drama and 0 everywhere else. Corresponding to
each movie/item one has such a label vector. For all the movies
let it be denoted as Q.

We now discuss encoding the user demographic informa-
tion. Encoding the gender information is the simplest. It is a
tuple encoded as [1,0]T for male and [0,1] T for female.

To encode the occupation information, we have an ordered
representation of the different occupations as in Figure 3. For
a particular user, one of the occupations is 1 the rest are 0s.

To encode the age information, we divide the users into
several ranges; more specifically into set into 8 groups (7-
14,14-21, 22-28, 29-36, 37-48, 49-55, 56-65 and 66-73). The
groups are divided keeping in mind the relevance of mentality

Fig. 3. Encoding Occupation Information
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Fig. 4. RBM variant with item metadata

of users according to age. The particular age group, where the
individual belongs to is 1 and the rest of them are 0s.

Thus, for ever user one will have a binary label vector. For
all users, this is a matrix T.

When incorporated in the latent factor model [25] using the
matrix factorization framework, the learning is expressed as,

min
U,V,M1,M2

∥∥Y −M � (UV )
∥∥2
F
|δ(‖T −M1U‖2F +‖Q−M2V ‖2F )

(15)
Instead of learning the maps from the latent factors, one

can also learn it directly from the ratings [25], i.e. the users
ratings are linearly mapped to the users binary labels encoding
the demographic information and the item ratings are mapped
to their corresponding binarized metadata. This is expressed
as,

min
U,V,M1,M2

∥∥Y −M � (R)
∥∥2
F
|δ(‖T −M1R‖2F +‖Q−RM2‖2F )

(16)
Collaborative filtering is a highly-under-determined prob-

lem. We have mentioned before, that only 5% of the ratings are
available and one needs to predict the remaining 95%. In such
a situation, any extra information helps. It is not surprising that
the metadata information in [25] indeed improve the results.

B. Label Consistent RBM

Motivated by the success of label consistent formulations in
latent factor models, we propose a novel label consistent RBM
to improve upon the existing CF formulation [10]. However,
unlike [25], it is not possible to capture both user and item
metadata in a single framework for the RBM based formula-
tions. To capture item metadata we add genre information of
movies to the simple RBM. In this variation, there are two
different layers of visible units, one layer consists of ratings
of N users and another layer is of binary label information
(genre vector Q) for that movie.

The joint probability distribution of this model is given by,

p(Q,V, h) ∝ e−E(Q,V,h) (17)

where we define the new energy function as follows:
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Fig. 5. RBM variant with user metadata

E(Q,V, h) = −hTWV − aTV − bTh− cTQ− hTUQ (18)

with parameters Θ = (W,a, b, c, U). The model is illus-
trated in Figure 4. We find the values of visible and hidden
units using Equations 9, 19 and 20 respectively.

p(hj = 1|V,Q) = σ(bj + Ujq +
∑
q

WjqVq) (19)

p(Qq = 1|h) =
exp(cq +

∑
j Ujqhj)∑Q

q=1 exp(cq +
∑

j Ujqhj)
(20)

where σ is the logistic sigmoid. These equations are meant
to capture the predictive information about the input vector as
well as the target class.

To perform the learning, we use the same Equation 12,
representation is as follows:

∆W k
ij = µ

δlogp(V,Q)

δW k
ij

= µ(< V k
i hjQi >data − < V k

i hjQi >model) (21)

where µ is learning rate.
To capture user meta data we add occupation, age, and

gender to the simple RBM. In this variation, we have four
different visible layers. Layer 1 consists of ratings given to all
the movies by user i, and has size M ×K. Layer 2 captures
occupation information for user i, and has size O. Layer 3
captures age information for user i, and has size A. Layer 4
captures gender information for user i, and has size S. The
joint probability distribution of this model is given by:

p(O,S,A, V, h) ∝ e−E(O,S,A,V,h) (22)

The modified energy function now becomes:

E(O,S,A, V, h) = −htWV − aTV − bTh− dTO
− dTZ − eTA− eTXA− fTS − fTY S

(23)

With parameters Θ = (W,a, b, d, e, f,X,Z, Y ). This model
is illustrated in Figure 5. To compute the parameters, we use
the following equations:

p(hj = 1|V,O, S,A) = σ(bj +Zjo +Xja +Yjs +
∑
i

WjiVi)

(24)

For occupation of the user

p(Oo = 1|h) =
exp(do +

∑
j Zjohj)∑O

o=1 exp(do +
∑

j Zjohj)
(25)

For gender of the user, following equation is used

p(Aa = 1|h) =
exp(ea +

∑
j Xjahj)∑A

a=1 exp(fs +
∑

j Yjshj)
(26)

For age of the user, following equation is used

p(Ss = 1|h) =
exp(fs +

∑
j Yjshj)∑S

s=1 exp(fs +
∑

j Yjshj)
(27)

To perform the learning, we use the same Equation 12,
representation is as follows:

∆W k
ij = µ

δlogp(V,O, S,A)

δW k
ij

= µ(< V k
i OiSiAihj >data − < V k

i OiSiAihj >model)
(28)

where µ is learning rate.

IV. EXPERTIMENTAL EVALUATION

A. Description of dataset

Experiments were carried out on the popular Movielens
dataset [26]. We used the 100K and 1M dataset. These are
the only datasets consisting of the user and item metadata.
The larger 10M dataset does not contain this (user and item
metadata) information.

The 100K consists of 100,000 ratings (1-5) from 943 users
and 1682 movies. Simple demographic information of the user
including age, occupation, gender, and zip code is available.
The zip code information is irrevelant [22] and is not used
here. For items genre information is present; other information
can be obtained from IMDB, however, we do not use it in our
experiments. In the 1M dataset, there are 1,000,209 ratings of
approximately 3900 movies by 6040 users.

B. Experimental setup and evaluation criteria

The standard experimental protocol is followed. 5 fold cross
validation is performed on the standard splits.

In [19] it was argued that the factors should be sparse. This
is based on the observation that it is not possible for one item
to possess all types of factors. Similarly, we argue that as users,
we have an affinity towards a few factors only. Therefore,
user latent factors should be sparse versions of our LC-RBM
formulation.

The learning rate is 0.0005 and number of epochs were 100.
The number of hidden units is 100.

The quality of prediction is compared in terms of the
standard metrics of Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE)



Method 100K Dataset 1M Dataset
MAE RMSE MAE RMSE

LC-RBM (Item) 0.7511 0.9451 0.7056 0.8625
Sparse LC-RBM (Item) 0.7352 0.9207 0.6895 0.8521
LC-RBM (User) 0.7709 0.9686 0.7269 0.8853
Sparse LC-RBM (User) 0.7418 0.9317 0.6995 0.8721
RBM [12] 0.8264 1.453 0.7821 1.023
PMF 0.7564 0.9639 0.7241 0.9127
LCMC 0.7193 0.9145 0.6731 0.8559

TABLE I
COMPARITIVE RESULTS

C. Results

We have compared our technique with the baseline RBM
[10]. For benchmarking, the de facto standard of probabilistic
matrix factorization (PMF) [27]–[29] is used. The results are
shown in the following table.

Results show that our proposed formulation of supervised
RBM indeed improves upon the unsupervised one [10]. Even
without sparsity, we (LC-RBM item) produce better results
than the benchmark RMF; the formulation using user metadata
(without sparsity) is however slightly worse than PMF. With
sparsity, our results improve even further. We always beat
PMF. We do not beat the results from LCMC. To the best of
our knowledge, it is the best-known algorithm for collaborative
filtering today.

V. CONCLUSION

Today RBM is popular as a building block for deep belief
network (DBN). However, an early work on the topic showed,
how it can be used in collaborative filtering. However the
results from RBM could not compete with matrix factorization
based latent factor models, and hence there is no significant
work on this topic (RBM on recommender systems) since
the publication of [10] in 2007. However, RBM based pre-
processing has been done for improving results of matrix
factorization; in fact, it has been used by the winners of the
famous Netflix competition.

This work revisits RBM for collaborative filtering. We pro-
pose a new supervised model for RBM - label consistent RBM.
This has been proposed to incorporate user and item metadata
information commonly found in recommender systems. This
significantly improves the performance, improving upon the
state-of-the-art unsupervised techniques like probabilistic ma-
trix factorization. In future, we would like to add graph-based
similarity measure [30] and item popularity information [31]
to our proposed method.
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